在實際反應過程中,甲醇與水蒸氣的混合氣體在一定的溫度(通常為 200 - 300℃)壓力(1 - 5MPa)條件下,通過裝填有催化劑的反應器。常見的催化劑有銅基催化劑,其活性中心能夠吸附甲醇和水蒸氣分子,使它們在催化劑表面發(fā)生活化。甲醇分子在催化劑表面發(fā)生裂解,生成一氧化碳和氫氣(rightleftharpoons CO + 2H_{2})。
當氧醇比(氧氣與甲醇的物質(zhì)的量之比)控制在合適的范圍內(nèi)時,部分甲醇被氧化釋放出熱量,這些熱量可以為反應體系提供能量,維持反應的進行,無需外部供熱。
該反應相對簡單,但由于產(chǎn)物中一氧化碳含量較高,而一氧化碳會對后續(xù)的氫氣應用,如燃料電池的使用產(chǎn)生不利影響,因此通常需要對產(chǎn)物進行進一步的處理,如通過一氧化碳變換反應將一氧化碳轉(zhuǎn)化為二氧化碳和氫氣,以提高氫氣的純度和質(zhì)量 。
在實際應用中,甲醇裂解制氫常與其他反應過程相結合,形成聯(lián)合制氫工藝,以充分發(fā)揮其優(yōu)勢,滿足不同場景下對氫氣的需求。與傳統(tǒng)制氫方式相比,甲醇制氫技術在儲存運輸、環(huán)保性、成本等方面展現(xiàn)出顯著優(yōu)勢。在儲存運輸方面,氫氣是一種極難儲存和運輸?shù)臍怏w,它具有低密度、高擴散性和易燃易爆等特性。
傳統(tǒng)的高壓氣態(tài)儲氫需要將氫氣壓縮至的壓力(通常為 35MPa 或 70MPa),這不僅需要昂貴的壓縮設備和高壓儲存容器,而且存在較大的安全風險 。液氫儲存雖然能量密度高,但需要將氫氣冷卻至 - 253℃的低溫,能耗,儲存和運輸成本高昂,且對儲存設備的絕熱性能要求。
而甲醇制氫過程中產(chǎn)生的二氧化碳相對純凈,更易于捕集和利用。如果采用可再生能源合成的甲醇作為原料,如利用太陽能、風能電解水制氫,再將氫氣與二氧化碳合成甲醇,那么整個甲醇制氫過程可以實現(xiàn)近乎零碳排放,對環(huán)境的友好性顯著提高。